Stable convergence of generalized L stochastic integrals and the principle of conditioning
نویسندگان
چکیده
We consider generalized adapted stochastic integrals with respect to independently scattered random measures with second moments, and use a decoupling technique, formulated as a “principle of conditioning”, to study their stable convergence towards mixtures of infinitely divisible distributions. The goal of this paper is to develop the theory. Our results apply, in particular, to Skorohod integrals on abstract Wiener spaces, and to multiple integrals with respect to independently scattered and finite variance random measures. The first application is discussed in some detail in the final section of the present work, and further extended in a companion paper (Peccati and Taqqu (2006b)). Applications to the stable convergence (in particular, central limit theorems) of multiple Wiener-Itô integrals with respect to independently scattered (and not necessarily Gaussian) random measures are developed in Peccati and Taqqu (2006a, 2007). The present work concludes with an example involving quadratic Brownian functionals. ∗This research was partially supported by the NSF Grant DNS-050547 at Boston University.
منابع مشابه
Stable convergence of generalized stochastic integrals and the principle of conditioning: L theory
Consider generalized adapted stochastic integrals with respect to independently scattered random measures with second moments. We use a decoupling technique, known as the “principle of conditioning”, to study their stable convergence towards mixtures of infinitely divisible distributions. Our results apply, in particular, to multiple integrals with respect to independently scattered and square ...
متن کاملGENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY
The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملTWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملLimit theorems for multiple stochastic integrals
We show that the general stable convergence results proved in Peccati and Taqqu (2007) for generalized adapted stochastic integrals can be used to obtain limit theorems for multiple stochastic integrals with respect to independently scattered random measures. Several applications are developed in a companion paper (see Peccati and Taqqu, 2008a), where we prove central limit results involving si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007